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Abstract. Recent work proposed defining type-safe macros via inter-
pretation into a multi-stage language. The utility of this approach was
illustrated with a language called MacroML, in which all type check-
ing is carried out before macro expansion. Building on this work, the
goal of this paper is to develop a macro language that makes it easy for
programmers to reason about terms locally. We show that defining the
semantics of macros in this manner helps in developing and verifying
not only type systems for macro languages but also equational reason-
ing principles. Because the MacroML calculus is sensetive to renaming
of (what appear locally to be) bound variables, we present a calculus of
staged notational definitions (SND) that eliminates the renaming prob-
lem but retains MacroML’s phase distinction. Additionally, SND incor-
porates the generality of Griffin’s account of notational definitions. We
exhibit a formal equational theory for SND and prove its soundness.

1 Introduction

Macros are powerful programming constructs with applications ranging from
compile-time configuration and numeric computation packages to the implemen-
tation of domain-specific languages [14]. Yet the subtlety of their semantics has
long been the source of undeserved stigma. As remarked by Steele and Gabriel,

“Nearly everyone agreed that macro facilities were invaluable in principle
and in practice but looked down upon each particular instance as a sort
of shameful family secret. If only the Right Thing could be found!” [15].

Recently, a promising approach to the semantics of generative macros has
been proposed. This approach is based on the systematic formal treatment of
macros as multi-stage computations [7]. Some of its benefits were illustrated
with MacroML, an extension of ML which supports inlining, parametric macros,
recursive macros, and macros that define new binding constructs, and in which
all type-checking is carried out before macro expansion.

Interpreting macros as multi-stage computations avoids some technical dif-
ficulties usually associated with macro systems (such as hygiene and scoping
issues). But while MacroML is capable of expressing staged macros, it is not
well-suited to reasoning about them. This is in part because MacroML does
not allow general alpha-conversion, and thus requires a non-standard notion of
substitution as well.
? Funded by NSF ITR-0113569.



Our goal in this paper is to demonstrate that interpreting macros as multi-
stage computations facilitates both the development of type systems and the
verification of formal reasoning principles for macro languages. More specifi-
cally, we aim to formalize staged macros in a way that makes it possible for
programmers to reason effectively about programs which use them.

1.1 Contributions

To this end we define SND, a calculus of staged notational definitions that re-
forms and generalizes the formal account of MacroML. SND combines the staging
of MacroML with a staged adaptation of Griffin’s formal development of nota-
tional definitions in the context of logical frameworks [8]. The former provides
the phase distinction [3] expected from macro definitions, and ensures that SND
macro expansion takes place before regular computation. The latter captures
precisely how parameters need to be passed to macros. A novel notion of signa-
ture allows us to express in the term language the information needed to pass
macro parameters to macros correctly. The signatures are expressive enough to
allow defining macros that introduce new binding constructs.

The semantics of SND is defined by interpreting it into a multi-stage lan-
guage. By contrast with both Griffin’s notational definitions and MacroML, the
interpretation and formal equational theory for SND are developed in an untyped
setting. The interpretation of SND is defined in a compositional and context-
independent manner. This makes possible the main technical contribution of this
paper, namely showing that the soundness of SND’s equational theory can be
established directly from the equational properties of the multi-stage language
used for interpretation. Our soundness result is obtained for untyped SND, and
so necessarily holds for any typed variant of that calculus. We develop a simply
typed variant of SND, prove that it is type-safe, and exhibit a sound embedding
of MacroML in it.

An alternative to the approach to “macros as multi-stage computations” pre-
sented here is to define the semantics of the macro language by interpretation
into a domain-theoretic or categorical model.3 But the CPO model of Filinski
[5, 6] would be too intensional with respect to second stage (i.e., run-time) com-
putations, and so additional work would still be needed to demonstrate that
equivalence holds in the second stage. This is significant: Even when languages
are extended with support for macros, the second stage is still considered the pri-
mary stage of computation, with the first stage often regarded as a pre-processing
stage. Categorical models can, of course, be extensional [10, 2], but they are cur-
rently fixed to specific type systems and specific approaches to typing multi-level
languages. By contrast, interpreting a macro language in the term-model of a
multi-stage language constitutes what we expect to be a widely applicable ap-
proach.

3 In this paper the word “interpretation” is used to mean “translation to give meaning”
rather than “an interpreter implementation”.



1.2 Organization of this Paper

Section 2 reviews MacroML, and illustrates how the absence of alpha-conversion
can make reasoning about programs difficult. Section 3 reviews key aspects of
Griffin’s development of notational definitions, and explains why this formalism
alone is not sufficient for capturing the semantics of macros. Section 4 reviews λU ,
the multi-stage calclus which will serve as the interpretation language for SND.
Section 5 introduces the notion of a staged notational definition and the macro
language SND which supports such definitions. It also defines the interpretation
of SND into λU , and uses this to show how SND programs are executed. Sec-
tion 6 presents a formal equational theory for SND and shows that the soundness
of this theory be established by reflecting the equational theory for the interpre-
tation language through the interpretation. Section 7 presents an embedding of
MacroML into SND along with a soundness result for the embedding. Section 8
concludes.

2 Renaming in MacroML

New binding constructs can be used to capture shorthands such as the following:

letopt x = e1 in e2
def= case e1 of Just(x) → e2 | Nothing → Nothing

Such notational definitions frequently appear in research papers (including this
one). The intent of the definition above is that whenever the pattern defined by
its left-hand side is encountered, this pattern should be read as an instance of
the right-hand side.

In MacroML, the notation defined above is introduced using the declaration

let mac (let opt x=e1 in e2) = case e1 of Just x -> e2
| Nothing -> Nothing

Unfortunately, the programmer may at some point choose to change the name
of the bound variable in the right-hand side of the above definition from x to y,
thus rewriting the above term to

let mac (let opt x=e1 in e2) = case e1 of Just y -> e2
| Nothing -> Nothing

Now the connection between the left- and right-hand sides of the definition is
lost, and the semantics of the new term is, in fact, not defined. This renaming
problem is present even in the definition of letopt above, and it shows that
general alpha-conversion is not sound in MacroML.

The absence of alpha-conversion makes it easy to introduce subtle mistakes
that can be hard to debug. In addition, since the notion of substitution depends
on alpha-conversion, MacroML necessarily has a non-standard notion of substi-
tution. Having a non-standard notion of substitution can significantly complicate
the formal reasoning principles for a calculus.

The SND calculus presented here avoids the difficulties associated with alpha-
conversion. It regains the soundness of alpha-conversion by using a convention



associated with higher-order syntax. This convention is distinct from higher-
order syntax itself, which is already used in MacroML and SND. It goes as far
back as Church at the meta-theoretic level, and is used in Griffin’s formal account
of notational definitions [8], and by Michaylov and Pfenning in the context of LF
[9]. It requires that whenever a term containing free variables is used, that term
must be explicitly instantiated with the local names for those free variables.

According to the convention, we would write the example above as

letopt x = e1 in ex
2

def= case e1 of Just(x) → ex
2 | Nothing → Nothing

It is now possible to rename bound variables without confusing the precise mean-
ing of the definition. Indeed, the meaning of the definition is preserved if we use
alpha-conversion to rewrite it to

letopt x = e1 in ex
2

def= case e1 of Just(z) → ez
2 | Nothing → Nothing

In SND (extended with a case construct and datatypes) the above definition can
be written with the following concrete syntax:

let mac (let opt x=e1 in ~(e2 <x>)) = case ~e1 of
Just x -> ~(e2 <x>)

| Nothing -> Nothing

By contrast with MacroML, when a user defines a new variant of an existing
binding construct with established scope in SND, it is necessary to indicate on
the left-hand side of the mac declaration which variables can occur where.

Previous work on MacroML has established that explicit escape and bracket
constructs can be used to control the unfolding of recursive macros [7]. In this
paper we encounter additional uses for these constructs in a macro language. The
escape around e1 indicates that e1 is a macro-expansion-time value being in-
serted into the template defined by the right-hand side of the macro. The escapes
around the occurrences of e2 <x>, on the other hand, indicate an instantiation
to the free variable x of a macro argument e2 containing a free variable.

3 Griffin’s Notational Definitions

Like Griffin’s work, this paper is concerned with the formal treatment of new
notation. Griffin uses a notion of term pattern to explicitly specify the binding
structure of, and name the components of, the notation being defined. His formal
account of notational definitions provides the technical machinery needed to
manage variable bindings in patterns, including binding patterns that themselves
contain bindings. A staged version is used in Section 5 to indicate precisely how
parameters should be passed to macros in order to ensure that the standard
notion of alpha-conversion remains valid for SND.

SND is concerned with definitions akin to what Griffin calls ∆-equations.



The above example would be written in the form of a ∆-equation as:

opt (e1, λx.e2)
∆= case ẽ1 of Just(x) → (̃e2 〈x〉) | Nothing → Nothing

∆-equations can be incorporated into a lambda calculus as follows: 4

p ∈ PND ::= x | (p, p) | λx.p

e ∈ END ::= x | λx.e | e e | (e, e) | πi e | let-delta x p
∆= e in e

Here PND is the set of patterns and END is the set of expressions. The pattern
λx.p denotes a pattern in which x is bound. A well-formed pattern can have at
most one occurrence of any given variable, including binding occurrences. Thus,
Vars(p1) ∩Vars(p2) = ∅ for the pattern (p1, p2), and x 6∈ Vars(p) for λx.p.

Griffin shows how the let-delta construct can be interpreted using only the
other constructs in the language. To define the translation, he uses two auxiliary
functions. The first computes the binding environments of pattern terms.

scopez
z(p) = [ ]

scope(p1,p2)
z (p′1, p

′
2) = scopepi

z (p′i), z ∈ FV (pi)
scopeλy.p1

z (λx.p) = x :: scopep1
z (p)

The second computes, for a pattern p, each variable z occurring free in p, and
each expression e, the subterm of e which occurs in the same pattern context in
which z occurs in p.

Φz
z(e) = e, Φ

(p1,p2)
z (e) = Φpi

z (πi e) where z ∈ FV (pi), Φλy.p
z (e) = Φp

z(e y)

We write let x = e1 in e2 to mean (λx.e2) e1, and let xi = ei in e to denote a
sequence of multiple simultaneous let bindings. With this notation, ∆-equations
can be interpreted in terms of the other constructs of the above calculus by

[[let-delta f p
∆= e1 in e2]] =

 let f = λx. let vi = λscopep
vi

(p).Φp
vi

(x)
in [[e1]]

in [[e2]] where {vi} = FV (p)

The construction λscopep
vi

(p).Φp
vi

(x) is a nesting of lambdas with Φp
vi

(x) as the
body. In λscopep

vi
(p).Φp

vi
(x) it is critical that all three occurrences of p denote

the same pattern. Note that λ[ ].y = y where [ ] is the empty sequence.
Griffin’s translation performs much of the work that is needed to provide a

generic account of macros that define new binding constructs. What it does not
provide is the phase distinction. Griffin’s work is carried out in the context of a
strongly normalizing typed lambda calculus where order of evaluation is provably
irrelevant. In the context of programming languages, however, expanding macros
before run-time can affect both the performance and the semantics of programs.
This point is discussed in detail in the context of MacroML in [7].
4 Throughout this paper we adopt Barendregt’s convention of assuming that the set

of bound variables in a given formula is distinct from the set of free variables.



4 A Multi-stage Language

The semantics of SND is given by interpretation into λU , a multi-stage calculus.
This section presents λU together with the results on which the rest of the paper
builds.

The syntax of λU is defined as follows:

e ∈ EλU ::= x | λx.e | e e | (e, e) | πi e | letrec f x = e in e | 〈e〉 | ẽ | run e

To develop an equational theory for λU , it is necessary to define a level classi-
fication of terms that keeps track of the nesting of escaped expressions ẽ and
bracketed expressions 〈e〉. We have

e0 ∈ E0
λU ::= x | λx.e0 | e0 e0 | (e0, e0) | πi e0

| letrec f x = e0 in e0 | 〈e1〉 | run e0

en+1 ∈ En+1
λU ::= x | λx.en+1 | en+1 en+1 | (en+1, en+1) | πi en+1

| letrec f x = en+1 in en+1 | 〈en+2〉 | ẽn | run en+1

v0 ∈ V 0
λU ::= λx.e0 | (v0, v0) | 〈v1〉

vn+1 ∈ V n+1
λU = En

Above and throughout this paper, the level of a term is indicated by a su-
perscript, e and its subscripted versions to denote arbitrary λU expressions, and
v and its subscripted versions indicate λU values. Values at level 0 are mostly as
would be expected in a lambda calculus. Code values are not allowed to carry
arbitrary terms, but rather only level 1 values. The key feature of level 1 values is
that they do not contain escapes that are not surrounded by matching brackets.
It turns out that this is easy to specify for λU , since values of level n + 1 are
exactly level n expressions.

Figure 1 defines the big-step semantics for λU . This semantics is based on
similar definitions for other multi-stage languages [4, 12, 18]. There are two fea-
tures of this semantics worthy of special attention. First, it makes evaluation
under lambda explicit. This shows that multi-stage computation often violates
one of the most commonly made assumptions in programming language seman-
tics, namely that attention can, without loss of generality, be restricted to closed
terms. Second, using just the standard notion of substitution [1], this semantics
captures the essence of static scoping. As a result, there is no need for additional
machinery to handle renaming at run-time.

The big-step semantics for λU is a family of partial functions
n
↪→ : EλU →

EλU from expressions to answers, indexed by level. Focusing on reductions at
level 0, we see that the third and fourth rules correspond to the rules of a CBV
lambda calculus. The rule for run at level 0 says that an expression is run by
first evaluating it to get an expression in brackets, and then evaluating that
expression. As a special case of the rule for evaluating bracketed expressions, we
see that an expression 〈e1〉 is evaluated at level 0 by rebuilding e1 at level 1. The
semantics of pairing and recursive unfolding at level 0 is standard.



e1
0

↪→ e3 e2
0

↪→ e4

(e1, e2)
0

↪→ (e3, e4)

e
0

↪→ (e1, e2)

πi e
0

↪→ ei λx.e
0

↪→ λx.e

e1
0

↪→ λx.e e2
0

↪→ e3 e[x := e3]
0

↪→ e4

e1 e2
0

↪→ e4

e2[f := λx.e1[f := letrec f x = e1 in f ]]
0

↪→ e3

letrec f x = e1 in e2
0

↪→ e3

e1
0

↪→ 〈e2〉 e2
0

↪→ e3

run e1
0

↪→ e3

e1
n+1
↪→ e2

πi e1
n+1
↪→ πi e2

e1
n+1
↪→ e3e2

n+1
↪→ e4

(e1, e2)
n+1
↪→ (e3, e4) x

n+1
↪→ x

e1
n+1
↪→ e2

λx.e1
n+1
↪→ λx.e2

e1
n+1
↪→ e3 e2

n+1
↪→ e4

e1 e2
n+1
↪→ e3 e4

e1
n+1
↪→ e3 e2

n+1
↪→ e4

letrec f x = e1 in e2
n+1
↪→ letrec f x = e3 in e4

e1
n+1
↪→ e2

〈e1〉
n
↪→ 〈e2〉

e1
n+1
↪→ e2

run e1
n+1
↪→ run e2

e1
n+1
↪→ e2

ẽ1
n+2
↪→ ẽ2

e1
0

↪→ 〈e2〉

ẽ1
1

↪→ e2

Fig. 1. λU Big-Step Semantics

Rebuilding, i.e., evaluating at levels higher than 0, is intended to eliminate
level 1 escapes. Rebuilding is performed by traversing the expression while cor-
rectly keeping track of levels. It simply traverses a term, without performing any
reductions, until a level 1 escape is encountered. When an escaped expression
ẽ1 is encountered at level 1, normal (i.e., level 0) evaluation is performed on e1.

In this case, evaluating e1 must yield a bracketed expression 〈e2〉, and then e2

is returned as the value of ẽ1.
In this paper we prove the soundness of the equational theory for SND by

building on the following results for λU [17] leading upto Theorem 1:

Definition 1 (λU Reductions). The notions of reduction of λU are:

πi (v0
1 , v0

2) →πU
v0

i

(λx.e0
1) v0

2 →βU
e0
1[x := v0

2 ]

letrec f x = e0
1 in e0

2 →recU
e0
2[f := λx.e0

1[f := letrec f x = e0
1 in f ]]

〈̃v1〉 →escU
v1

run 〈v1〉 →runU
v1

We write →λU for the compatible extension of the union of these rules.

Definition 2 (Level 0 Termination). ∀e ∈ E0. e⇓ ≡ (∃v ∈ V 0. e
0

↪→ v)

Definition 3 (Context). A context is an expression with exactly one hole [ ].

C ∈ C := [ ] | (e, C) | (C, e) | πi C | λx.C | C e | eC
| letrec f x = C in e | letrec f x = e in C | 〈C〉 | ˜C | run C



x : tn ∈ Γ

Γ `n x : t

Γ `n e1 : t1 Γ `n e2 : t2

Γ `n (e1, e2) : t1 ∗ t2

Γ `n e : t1 ∗ t2

Γ `n πi e : ti

Γ, x : tn
1 `n e : t2

Γ `n λx.e : t1 → t2

Γ `n e1 : t2 → t Γ `n e2 : t2

Γ `n e1e2 : t

Γ, f : (t1 → t2)
n, x : tn

1 `n e1 : t2
Γ, f : (t1 → t2)

n `n e2 : t3

Γ `n letrec f x = e1 in e2 : t3

Γ `n+1 e : t

Γ `n 〈e〉 : 〈t〉
Γ `n e : 〈t〉
Γ `n+1 ẽ : t

Γ+ `n e : 〈t〉
Γ `n run e : t

Fig. 2. λU Type System

We write C[e] for the expression resulting from replacing (“filling”) the hole [ ]
in the context C with the expression e.

Definition 4 (Observational Equivalence). The relation ≈n ⊆ En × En is
defined by: ∀n ∈ N.∀e1, e2 ∈ En.

e1 ≈n e2 ≡ ∀C ∈ C. C[e1], C[e2] ∈ E0 =⇒ (C[e1]⇓ ⇐⇒ C[e2]⇓ )

Theorem 1 (Soundness). ∀n ∈ N.∀e1, e2 ∈ En. e1 →λU e2 =⇒ e1 ≈n e2.

A simple type system can be defined for λU using the following types:

t ∈ TλU ::= nat | t ∗ t | t → t | 〈t〉

Here nat is a type for natural numbers, pair types have the form t1 * t2 and
function types have the form t1 → t2. The λU code type is denoted by 〈t〉.

The rules of the type system are presented in Figure 2. The type system for λU

is defined by a judgment of the form Γ `n e : t. The natural number n is defined
to be the level of the λU term e. The typing context Γ is a map from identifiers
to types and levels, and is represented by the term language Γ ::= [ ] | Γ, x : tn.
In any valid context Γ there should be no repeating occurrences of the same
variable name. We write x : tn ∈ Γ if x : tn is a subterm of a valid Γ .

The first six rules of the type system are standard typing rules, except that
the level n of each term is recorded in the typing judgments. In the rules for
abstractions and recursive functions, the current level is taken as the level of the
bound variable when it is added to the typing context.

The rule for brackets gives 〈e〉 type 〈t〉 whenever e has type t and e is typed
at the level one greater than the level at which 〈e〉 is typed. The rule for escape
performs the converse operation, so that escapes undo the effect of brackets.
The level of a term thus counts the number of surrounding brackets minus the
number of surrounding escapes. Escapes can only occur at level 1 and higher.

The rule for run e is rather subtle. We can run a term of type 〈t〉 to get a
value of type t. We must, however, be careful to check that the term being run
can be typed under an appropriate extension Γ+ of the current type context



Γ , rather than simply in Γ itself. The type context Γ+ has exactly the same
variables and corresponding types as Γ , but the level of each is incremented by
1. Without this level adjustment, the type system is unsafe [18, 12, 16].

The soundness of this type system has already been established [18, 12, 16].
While this type system is not the most expressive one available for λU (c.f. [19]),
it is simple and sufficient for our purposes.

5 Staged Notational Definitions

We begin with the syntax of SND. This extension of Griffin’s notational defini-
tions has all the usual expressions for a CBV language, together with the previ-
ously described letmac construct for defining macros, pattern-bound expressions
for recording macro binding information, and the explicit staging annotations ẽ
and 〈e〉 of λU for controlling recursive inlining. SND is defined by:

p ∈ PSND ::= x | ˜x | (p, p) | λx.p
q ∈ QSND ::= ∗ | ˜∗ | (q, q) | λq
e ∈ ESND ::= x | λx.e | e e | (e, e) | πi e | letrec y x = e1 in e2

| p.e | eq e | letmac f p = e1 in e2 | 〈e〉 | ẽ

Elements of PSND are called patterns. An SND pattern can be either a regular
macro parameter x, an early macro parameter ˜x, a pair (p1, p2) of patterns, or a
pair λx.p of a bound variable and a pattern. Early parameters represent regular
values which are available at macro-expansion time; they appear as escaped
variables, which ensures that the arguments replacing them in a macro call are
evaluated during macro expansion. Binder-bindee pairs represent subterms of
new binding constructs. Like patterns in Griffin’s notational definitions, an SND
pattern can contain at most one occurrence of any given variable.

Elements of QSND are called signatures. Signatures capture the structure of
the elements of PSND as defined by the following function:

x = ∗ ˜x = ˜∗ (p1, p2) = (p1, p2) λx.p = λp

Signatures play an essential role in defining an untyped semantics for SND.
They capture precisely how parameters need to be passed to macros, and do this
without introducing additional complexity to the notion of alpha-conversion.

Elements of ESND are SND expressions. Of particular importance are SND
macro abstractions and applications, i.e., expressions of the form p.e and e′q e′′,
respectively. Intuitively, a macro expression is a first-class value representing a
∆-equation. Such a value can be used in any macro application. In a macro
application e′q e′′, the expression e′q is a computation that should evaluate to
a macro abstraction p.e. Because the way in which parameters are passed to a
macro depends on the pattern used in the macro abstraction, the pattern p in
p.e must have the signature q indicated at the application site in e′q e′′.

The definition of substitution for SND is standard (omitted for space).
Because of the non-standard interdependence between names of bound vari-

ables in MacroML, it is not clear how to define the notion of alpha-conversion



(and, in turn, substitution) in that setting. The same difficulties do not arise for
SND because alpha-conversion is valid for SND.

Although a type system is not necessary for defining the semantics of SND,
certain well-formedness conditions are required. Intuitively, the well-formedness
conditions ensure that variables intended for expansion-time use are only used
in expansion-time contexts, and similarly for variables intended for run-time
use. The well-formedness conditions also ensure that an argument to a macro
application has the appropriate form for the signature of the macro being applied.
A system similar to that below has been used in the context of studies on monadic
multi-stage languages [11].

Well-formedness of SND expressions requires consistency between binding
levels and usage levels of variables. Thus, to define the well-formedness judg-
ment for SND, we first need to define a judgment capturing variable occurrence
in patterns. In the remainder of this paper, m ∈ {0, 1} will range over evalua-
tion levels 0 and 1. Level 0 corresponds to what is traditionally called macro-
expansion time, and level 1 corresponds to what is traditionally called run-time.

Lookup of a variable x in a level-annotated pattern p is given by the judgment
p `m x defined as follows:

xm `m x (̃ x)0 `0 x

p0
i `0 x

(p1, p2)0 `0 x

p0 `0 x

(λy.p)0 `0 x

If P is a set of level-annotated patterns, write P `m x to indicate that x occurs
at level m in (at least) one of the patterns in P .

We now define the well-formedness judgments P `m e and P `q e for SND
expressions. Here, the context P ranges over sets of level-annotated patterns in
which any variable occurs at most once. Well-formedness must be defined with
respect to a context P because we need to keep track of the level at which a
variable is bound to ensure that it is used only at the same level.

pm `m x

P, pm `m x

P `m e1 P `m e2

P `m (e1, e2)
P `m e

P `m πie

P, xm `m e

P `m λx.e

P `m e1 P `m e2

P `m e1 e2

P, ym, xm `m e1 P, ym `m e2

P `m letrec y x = e1 in e2

P, p0 `1 e

P `0 p.e

P `0 e1 P `q e2

P `1 (e1)q e2

P, p0, f0 `1 e1 P, f0 `1 e2

P `1 letmac f p = e1 in e2

P `1 e

P `0 〈e〉
P `0 e

P `1 ẽ

P `1 e

P `∗ e

P `0 e

P `˜∗ e

P `q1 e1 P `q2 e2

P `(q1,q2) (e1, e2)

P, y1 `q e

P `λq λy.e

As is customary, we write `m e for ∅ `m e.
In the untyped setting, the signature q at the point where a macro is applied

is essential for driving the well-formedness check for the argument to the macro.
As will be seen later in the paper, the signature q also drives the typing judgment
for the argument in a macro application. In source programs, if we restrict eq in



[[x]]m = x, [[(e1, e2)]]
m = ([[e1]]

m, [[e2]]
m), [[πi e]]m = πi [[e]]m, [[λx.e]]m = λx.[[e]]m,

[[e1 e2]]
m = [[e1]]

m [[e2]]
m, [[letrec y x = e1 in e2]]

m = letrec y x = [[e1]]
m in [[e2]]

m,

[[p.e]]0 = λx.let vi = λscopep
vi

(p).Φp
vi

(x) in 〈[[e]]1〉 where {vi} = FV (p),

[[(e1)q e2]]
1 = (̃[[e1]]

0 [[e2]]
q)

[[letmac f p = e1 in e2]]
1 =


(̃letrec f x = let vi = λscopep

vi
(p).Φp

vi
(x)

in 〈[[e1]]
1〉

in 〈[[e2]]
1〉) where {vi} = FV (p)

[[〈e〉]]0 = 〈[[e]]1〉, [[̃ e]]1 = [̃[e]]0

[[e]]∗ = 〈[[e]]1〉, [[e]]˜∗ = [[e]]0, [[(e1, e2)]]
(q1,q2) = ([[e1]]

q1 , [[e2]]
q2),

[[λx.e]]λq = λx.[[e]]q[x := ˜x]

Fig. 3. Interpretation of SND in λU

a macro application to the name of a macro, then the signature q can be inferred
from the context, and does not need to be written explicitly by the programmer.
At the level of the calculus, however, it is more convenient to make it explicit.

The expected weakening results hold, namely, if P `n e then P, pm `n e, and
if P `q e then P, pm `q e. Substitution is also well-behaved:

Lemma 1 (Substitution Lemma).

1. If pn `n x, P, pn `m e1, and P `n e2, then P, pn `m e1[x := e2].
2. If pn `n x, P, pn `q e1, and P `n e2, then P, pn `q e1[x := e2].

5.1 Semantics of SND

The only change we need to make to Griffin’s auxiliary functions to accommodate
staging of notational definitions is a straightforward extension to include early
parameters:

scopez
z(p) = scope˜z

z (̃ p) = [ ], scope(p1,p2)
z (p′1, p

′
2) = scopepi

z (p′i), z ∈ FV (pi),
scopeλy.p1

z (λx.p) = x :: scopep1
z (p)

Φz
z(e) = Φ˜z

z (e) = e, Φ
(p1,p2)
z (e) = Φpi

z (πi e), z ∈ FV (pi), Φλy.p
z (e) = Φp

z(e y)

The interpretation of SND in λU is given in Figure 3. It is well-behaved in
the sense that, for all m, and for all signatures q and expressions e, if P `m e
then [[e]]m is defined and is in Em

λU , and if P `q e then [[e]]q is defined and is in
E0

λU . It is also substitutive:

Lemma 2. For all m and n, and for all patterns p, signatures q, sets P and P ′

of patterns, and expressions e1 and e2,



1. If pn ` x, if P, P ′, pn `m e1, and if P `n e2, then [[e1]]m[x := [[e2]]n] =
[[e1[x := e2]]]m.

2. If pn ` x, if P, P ′, pn `q e1, and if P `n e2, then [[e1]]q[x := [[e2]]n] = [[e1[x :=
e2]]]q.

Note that no analogue of Lemma 2 holds for the interpretation of MacroML.

5.2 Executing SND Programs

After translation into λU , SND programs are executed in exactly the same way
as MacroML programs. The result of running a well-formed SND program `1 e
is obtained simply by evaluating the λU term run e〈[[`1 e]]〉. A finer-grained view
of the evaluation of [[`1 e]] can be obtained by observing that evaluating proceeds
in two distinct steps, namely

1. macro expansion, in which the SND program e is expanded into the λU

program e′1 for which 〈[[`1 e]]〉 0
↪→ e′1.

2. regular execution, in which the λU expansion e′1 of e is evaluated to obtain

the value e′2 for which run e′1
0

↪→ e′2.

The following examples illustrate SND program execution. They assume a
hypothetical extension of our calculus in which arithmetic expressions have been
added in a standard manner, such as using Church numerals.

Example 1 (Direct Macro Invocation). In SND, the level 1 term (x.̃ x+˜x)∗ (2+
3) represents a direct application of a macro x.̃ x + ˜x to the term 2 + 3. The
macro itself simply takes one argument and constructs a term that adds this
argument to itself. The result of applying the translation to this macro is

[[(x.̃ x +˜x)∗ (2 + 3)]]1

= (̃[[(x.̃ x +˜x)∗]]0 [[2 + 3]]∗)
= (̃λy.let x = y in 〈[[(̃ x +˜x)]]1〉 〈[[2 + 3]]1〉)
= (̃λy.let x = y in 〈(̃ x +˜x)〉 〈2 + 3〉)

The result is a level 1 λU term which, if rebuilt at level 1, produces the term
(2+3)+(2+3). That is, (̃λy.let x = y in 〈(̃ x +˜x)〉 〈2 + 3〉) 1

↪→ (2 + 3) + (2 + 3).

Example 2 (First Class Macros). This example demonstrates that macros can be
passed around as values, and then used in the context of a macro application. The
level 0 SND term let M = x.̃ x +˜x in 〈M∗ (2 + 3)〉 binds the variable M to the
macro from the above example, and then applies M (instead of directly applying
the macro) to the same term seen in Example 1. The result of translating this
SND term is

[[let M = x.̃ x +˜x in 〈M∗ (2 + 3)〉]]0

= let M = λy.let x = y in 〈[[(̃ x +˜x)]]1〉 in 〈[[M∗ (2 + 3)]]1〉
= let M = λy.let x = y in 〈̃ x +˜x〉 in 〈̃ (M [[2 + 3]]∗)〉
= let M = λy.let x = y in 〈̃ x +˜x〉 in 〈̃ (M 〈2 + 3〉)〉



When the resulting level 0 λU term is evaluated at level 0, the term 〈(2+3)+(2+
3)〉 is produced. If we had put an escape ˜ around the original SND expression,
then it would have been a level 1 expression. Translating it would thus have
produced a level 1 λU term which, if rebuilt at level 1, would give exactly the
same result produced by the term in Example 1.

Example 3 (Basic Macro Declarations).

[[letmac M x = ˜x +˜x in M∗ (2 + 3)]]1

= (̃letrec M y = let x = y in 〈[[̃ x +˜x]]1〉 in 〈[[M∗ (2 + 3)]]〉)
= (̃letrec M y = let x = y in 〈̃ x +˜x〉 in 〈̃ (M 〈2 + 3〉)〉)

Example 4 (SNDs). Consider the following SML datatype:

datatype ’a C = C of ’a
fun unC (C a) = a

The SND term (x, λy.z).(λy.̃ (z 〈y〉))(unC ˜x) defines a “monadic-let” macro for
this datatype. [[

letmac L (x, λy.z) = (λy.̃ (z 〈y〉))(unC ˜x)
in L(∗,λ∗) (C 7, λx.C (x + x))

]]1

=


(̃letrec L x′ =

let x = λscope(x,λy.z)
x (x, λy.z).Φ(x,λy.z)

x (x′)
let z = λscope(x,λy.z)

z (x, λy.z).Φ(x,λy.z)
z (x′)

in 〈[[(λy.̃ (z 〈y〉))(unC ˜x)]]1〉
in 〈[[L(∗,λ∗) (C 7, λx.C (x + x))]]1〉)

=


(̃letrec L x′ =

let x = π1 x′

let z = λy.((π2 x′)y)
in 〈(λy.̃ (z 〈y〉))(unC ˜x)〉

in 〈̃ (L ([[C 7]]∗, [[λx.C (x + x)]]λ∗))〉)

=


(̃letrec L x′ =

let x = π1 x′

let z = λy.((π2 x′)y)
in 〈(λy.̃ (z 〈y〉))(unC ˜x)〉

in 〈̃ (L (〈C 7〉, λx.〈C (̃ x +˜x)〉))〉)

Evaluating the final term according to the standard λU semantics at level 1
yields (λy.C (y + y)) (unC (C 7)).

6 Reasoning about SND Programs

A reasonable approach to defining observational equivalence on SND terms is to
consider the behavior of the terms generated by the translation.



Definition 5. Two SND expressions e1 and e2 are observationally equivalent if
there exists a P such that both P `m e1 and P `m e2 are derivable, and [[e1]]m

and [[e2]]m are observationally equivalent level m λU terms.

We write e1 ≈m e2 when e1 and e2 are observationally equivalent SND terms.
To specify the equational theory for SND and show that it has the desired

properties, we use the following five sets to categorize the syntax of SND terms
after the macro expansion phase has been completed. All are subsets of ESND .

Definition 6.

em ∈ Em
SND = { e | ∃P. P `m e }

ep ∈ Ep
SND = { e | ∃P. P `p e }

v0 ∈ V 0
SND ::= λx.e0 | (v0, v0) | p.e1 | 〈v1〉

v1 ∈ V 1
SND ::= x | λx.v1 | v1 v1 | (v1, v1) | πi v1 | letrec y x = v1 in v1

vp ∈ V p
SND = { v | ∃P. P `p v }

The set V 1
SND is a subset of ESND , but it does not allow for escapes, macros,

or brackets in terms. The interpretation of SND in λU preserves syntactic cat-
egories, i.e., [[vm]]m ∈ V m

λU and [[vp]]p ∈ V 0
λU .

Definition 7 (SND Reductions). The relation → is defined as the reflexive
transitive closure of the compatible extension of the following notions of reduction
defined on SND terms:

πi (v0
1 , v0

2) →π v0
i

(λx.e0
1)v

0
2 →β e0

1[x := v0
2 ]

letrec f x = e0
1 in e0

2 →rec e0
2[f := λx.e0

1[f := letrec f x = e0
1 in f ]]

(p.e0
1)p vp

2 →µ e0
1[vi = λscopep

vi
(p).Θp

vi
(vp

2)], {vi} = FV (p)

〈̃v1〉 →esc v1

letmac fp = e1
1 in e1

2 →mac


(̃letrec f x =
let vi = λscopep

vi
(p).Φp

vi
(x)

in 〈e1
1〉

in 〈e1
2〉) where {vi} = FV (p)

Here,
Θz

z(e) = 〈e〉
Θ˜z

z (e) = e
Θλy.p

z (λx.e) = Θp
z(e[x := ỹ])

Θ
(p1,p2)
z ((e1, e2)) = Θpi

z (ei), z ∈ FV (pi)

Note that Φp
z([[e

p]]p) = [[Θp
z(ep)]]0 shows that the use of signatures is implicit in

the definition of Θp
z(e).

Theorem 2 (Soundness of SND Reductions).
If P `m e1 and P `m e2 then e1 → e2 =⇒ e1 ≈m e2.



6.1 A Type System for SND

The development so far shows that we can define the semantics for untyped
SND, and that there is a non-trivial equational theory for this language. These
equalities will hold for any typed variant of SND. To illustrate how such a type
system is defined and verified, this section presents a simply typed version of
SND and proves that it guarantees type safety.

The set of type terms is defined by the grammar:

t ∈ TSND ::= nat | t ∗ t | t → t | 〈t〉

Here, nat is representative for various base types, t1 ∗ t2 is a type for pairs
comprising values of types t1 and t2, t1 → t2 is a type for partial functions that
take a value of type t1 and return a value of type t2, and 〈t〉 is the type for a
next-stage value of type t.

To define the typing judgment, a notion of type context is needed. Type
contexts are generated by the following grammar, with the additional condition
that any variable name occurs exactly once in any valid context Γ .

Γ ∈ GSND ::= [] | Γ, x : tm | Γ, x : t1 | Γ, p : t0

The case of x : t1 is treated just like that of x : tm by the type system. The dis-
tinction is useful only as an instrument for proving type safety. Figure 4 presents
a type system for SND and various auxiliary judgments needed in defining it.

6.2 Type Safety for SND

Type safety for SND is established by showing that the interpretation maps
well-typed SND terms to well-typed λU terms (which themselves are known to
be type-safe). SND types map unchanged to λU types. The translation on type
contexts “flattens” the p : t0 bindings into bindings of the form x : t0. This
translation also transforms bindings of the form y : t0 to ones of the form y : 〈t〉.
Formally, the translation interprets each binding in a type context Γ as follows:

[[x : tm]] = x : tm, [[x : t1]] = x : 〈t〉0,
[[̃ x : t0]] = x : t0, [[(p1, p2) : (t1, t2)0]] = ([[p1 : t01]], [[p2 : t02]]),

[[(λx.p) : (〈t1〉 → t2)0]] = {xi : (〈t1〉 → ti)0} where {xi : t0i } = [[p : t2]]

The translation of SND into λU preserves types in the following sense. Suppose
[[Γ ]] is well-defined and yi are the underlined variables in Γ . If Γ `m e : t is a valid
SND judgment, then [[Γ ]] `m [[e]]m[yi = ỹi] : t is a valid λU judgment. Similarly,
if Γ `q e : t is a valid SND judgment, then [[Γ ]] `0 [[e]]q[yi = ỹi] : t is a valid
λU judgment. Comparing this result to the corresponding one for MacroML, we
notice that: 1) types require no translation, 2) the translation operates directly
on the term being translated and not on the typing judgment for that term, and
3) each part of the lemma requires that [[Γ ]] is well-defined. This last condition
is vacuously true for the empty type context (which is what is needed for type
safety). In the general case, this condition simply means that any binding p : tm

occurs at level m = 0 and satisfies the well-formedness condition ` p : t.



` ∗ : 〈t〉 ` ∗̃ : t

` q1 : t1 ` q2 : t2

` (q1, q2) : t1 ∗ t2

` q : t2

` λq : 〈t1〉 → t2 x : tm `m x : t

(̃ x : t)0 `0 x : t

pi : t0i `0 x : t

(p1, p2) : (t1, t2)
0 `0 x : t

p : t02 `0 x : t3

(λy.p) : (t1 → t2)
0 `0 x : t1 → t3

p : tm
1 `m x : t2

Γ, p : tm
1 , Γ ′ `m x : t2 Γ, y : t1, Γ ′ `1 y : t

Γ `m e1 : t1 Γ `m e2 : t2

Γ `m (e1, e2) : t1 ∗ t2

Γ `m e : t1 ∗ t2

Γ `m πie : ti

Γ, x : tm
1 `m e : t2

Γ `m λx.e : t1 → t2

Γ `m e1 : t1 → t2 Γ `m e2 : t1

Γ `m e1 e2 : t2

Γ, p : t01 `1 e : t2 ` p : t1

Γ `0 p.e : t1 → 〈t2〉
Γ, y : t1 → tm

2 , x : tm
1 `m e1 : t2 Γ, y : t1 → tm

2 `m e2 : t3

Γ `m letrec y x = e1 in e2 : t3

Γ `0 e1 : t1 → 〈t2〉 ` q : t1 Γ `q e2 : t1

Γ `1 (e1)q e2 : t2
Γ, p : t01, f : t1 → 〈t2〉0 `1 e1 : t2 ` p : t1 Γ, f : t1 → 〈t2〉0 `1 e2 : t3

Γ `1 letmac f p = e1 in e2 : t3

Γ `1 e : t1

Γ `0 〈e〉 : 〈t1〉
Γ `0 e : 〈t1〉
Γ `1 ẽ : t1

Γ `1 e1 : t1

Γ `∗ e1 : 〈t1〉
Γ `0 e : t1

Γ `˜∗ e : t1

Γ `q1 e1 : t1 Γ `q2 e2 : t2

Γ `(q1,q2) (e1, e2) : t1 ∗ t2

Γ, y : t11 `q e : t2

Γ `λq λy.e : 〈t1〉 → t2

Fig. 4. Type System for SND

Theorem 3 (Type Safety). If `m e : t is a valid SND judgment, then trans-
lating e to λU yields a well-typed λU program, and executing that program does
not generate any λU run-time errors.

7 Embedding of MacroML in SND

Embedding MacroML into SND requires a minor modification to the original def-
inition of how MacroML is interpreted in a multi-stage language. In particular,
MacroML macros have exactly three arguments (representative of the three pos-
sible kinds of arguments: early parameters, regular parameters, and new binding
constructs). In the original definition of MacroML, these arguments are taken to
be curried. It simplifies the embedding to modify the original definition to treat
these three arguments as a tuple.

The type system of MacroML is virtually unchanged, and is reproduced in
Figure 5. The modified interpretation of MacroML in λU is presented in Figure 7.
The embedding of MacroML into SND is given in Figure 6.



x : tm ∈ Γ

Σ; ∆; Π; Γ `m x : t

x : t ∈ Π or x : t ∈ Π

Σ; ∆; Π; Γ `1 x : t

x2 : [x1 : t1]t2 ∈ ∆ x1 : t11 ∈ Γ

Σ; ∆; Π; Γ `1 x2 : t2
Σ; ∆; Π; Γ, x : tm

1 `m e : t2

Σ; ∆; Π; Γ `m λx.e : t1 → t2

Σ; ∆; Π; Γ `m e1 : t2 → t Σ; ∆; Π; Γ `m e2 : t2

Σ; ∆; Π; Γ `m e1e2 : t

Γ ′ ≡ Γ, f : (t1 → t2 → t3 → t)m

Σ; ∆; Π; Γ ′, x1 : tm
1 , x2 : tm

2 , x3 : tm
3 `m e1 : t

Σ; ∆; Π; Γ ′ `m e2 : t4

Σ; ∆; Π; Γ `m letrec f x1 x2 x3 = e1 in e2 : t4

f : (t1, t2, [t3]t4) ⇒ t5 ∈ Σ
Σ; ∆; Π; Γ `0 e1 : t1
Σ; ∆; Π; Γ `1 e2 : t2
Σ; ∆; Π, x : t3; Γ `1 e3 : t4

Σ; ∆; Π; Γ `1 f(e1, e2, λx.e3) : t5
Σ′ ≡ Σ, f : (t1, t2, [t3]t4) ⇒ t5
Σ′; ∆, x2 : [x : t3]t4; Π, x1 : t2; Γ, x0 : t01 `1 e1 : t5
Σ′; ∆; Π; Γ `1 e2 : t

Σ; ∆; Π; Γ `1 letmac f (̃ x0, (x1, λx.x2)) = e1 in e2 : t

Σ; ∆; Π; Γ `1 e : t

Σ; ∆; Π; Γ `0 〈e〉 : 〈t〉
Σ; ∆; Π; Γ `0 e : 〈t〉
Σ; ∆; Π; Γ `1 ẽ : t

Fig. 5. MacroML Type System (with underlines)

Theorem 4 (Embedding). Translating any well-formed MacroML term into
SND and then into λU is equivalent to translating the MacroML term directly
into λU . That is, If Σ;∆; {xi : ti};Γ `m e : t is a valid MacroML judgment,
then [[[[Σ;∆; {xi : ti};Γ `m e : t]]M ]]m[xi := ˜xi] ≈m [[Σ;∆; {xi : ti};Γ `m e : t]].

8 Conclusions

Previous work demonstrated that the “macros as multi-stage computations”
approach is instrumental for developing and verifying type systems for expressive
macro languages. The present work shows that, for a generalized revision of the
MacroML calculus, the approach also facilitates developing an equational theory
for a macro language. Considering this problem has also resulted in a better
language, in that the semantics of programs does not change if the programmer
accidentally “renames” what she perceives is a locally bound variable. The work
presented here builds heavily on Griffin’s work on notational definitions, and
extends it to the untyped setting using the notion of signatures.

Compared to MacroML, SND embodies a number of technical improvements
in terms of design of calculi for modeling macros. First, it supports alpha-
equivalence. Second, its translation into λU is substitutive. Compared to no-
tational definitions, SND provides the phase distinction that is not part of the
formal account of notational definitions. Introducing the phase distinction means
that macro application is no longer just function application. To address this
issue, a notion of signatures is introduced, and is used to define an untyped
semantics and equational theory for SND.



Lambda Terms

x : tm ∈ Γ

[[Σ; ∆; Π; Γ `m x : t]]M = x

[[Σ; ∆; Π; Γ, x : tm
1 `m e : t2]]

M = e′

[[Σ; ∆; Π; Γ `m λx.e : t1 → t2]]
M = λx.e′

[[Σ; ∆; Π; Γ `m e1 : t2 → t]]M = e′1 [[Σ; ∆; Π; Γ `m e2 : t2]]
M = e′2

[[Σ; ∆; Π; Γ `m e1e2 : t]]M = e′1e
′
2

[[Σ; ∆; Π; Γ, f : (t1 → t2 → t3 → t)m, x1 : tm
1 , x2 : tm

2 , x3 : tm
3 `m e1 : t]]M = e′1

[[Σ; ∆; Π; Γ, f : (t1 → t2 → t3 → t)m `m e2 : t4]]
M = e′2

[[Σ; ∆; Π; Γ `m letrec f x1 x2 x3 = e1 in e2 : t4]]
M = letrec f x1 = λx2.λx3.e

′
1 in e′2

Macros

x : t ∈ Π

[[Σ; ∆; Π; Γ `1 x : t]]M = x

x : t ∈ Π

[[Σ; ∆; Π; Γ `1 x : t]]M = ˜x

x2 : [x1 : t1]t2 ∈ ∆ x1 : t11 ∈ Γ

[[Σ; ∆; Π; Γ `1 x2 : t2]]
M = (̃x2 〈x1〉)

[[Σ, f : (t1, t2, [t3]t4) ⇒ t5; ∆, x2 : [x : t3]t4; Π, x1 : t2; Γ, x0 : t01 `1 e1 : t5]]
M = e′1

[[Σ, f : (t1, t2, [t3]t4) ⇒ t5; ∆; Π; Γ `1 e2 : t]]M = e′2

[[Σ; ∆; Π; Γ `1 letmac f (̃ x0, x1, λx.x2) = e1 in e2 : t]]M

= letmac f (̃ x0, x1, λx.x2) = e′1 in e′2

f : (t1, t2, [t3]t4) ⇒ t5 ∈ Σ [[Σ; ∆; Π; Γ `0 e1 : t1]]
M = e′1

[[Σ; ∆; Π; Γ `1 e2 : t2]]
M = e′2 [[Σ; ∆; Π, x : t3; Γ `1 e3 : t4]]

M = e′3

[[Σ; ∆; Π; Γ `1 f(e1, e2, λx.e3) : t5]]
M = (f(˜∗,(∗,λ∗)) (e′1, (e

′
2, λx.e′3)))

Code Objects

[[Σ; ∆; Π; Γ `1 e : t]]M = e′

[[Σ; ∆; Π; Γ `0 〈e〉 : 〈t〉]]M = 〈e′〉
[[Σ; ∆; Π; Γ `0 e : 〈t〉]]M = e′

[[Σ; ∆; Π; Γ `1 ẽ : t]]M = ẽ′

Fig. 6. Translation from MacroML to SND

Previous work on MacroML indicated a need for making explicit the escape
and bracket constructs in the language, so that unfolding recursive macros could
be controlled. In the present work, escapes and brackets are found to be useful for
specifying explicitly the instantiation of a macro parameter with free variables
to specific variables inside the definition of the macro. These observations, as
well as the results presented in this paper, suggest that macro languages may
naturally and usefully be viewed as conservative extensions of multi-stage (or at
least two-level) languages.
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context of MacroML’s letmac could be problematic. We thank the anonymous referees
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fully due to space constraints. Stephan Ellner proofread a draft of the paper.



References

1. Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, revised ed.
North-Holland, Amsterdam, 1984.

2. Benaissa, Z. E.-A., Moggi, E., Taha, W., and Sheard, T. Logical modalities
and multi-stage programming. In Federated Logic Conference Satellite Workshop
on Intuitionistic Modal Logics and Applications (1999).

3. Cardelli, L. Phase distinctions in type theory. (Unpublished manuscript.) Avail-
able online from http://www.luca.demon.co.uk/Bibliography.html, 1988.

4. Davies, R. A temporal-logic approach to binding-time analysis. In Symposium on
Logic in Computer Science (1996), IEEE Computer Society Press, pp. 184–195.

5. Filinski, A. A semantic account of type-directed partial evaluation. In Principles
and Practice of Declarative Programming (1999), vol. 1702 of LNCS, pp. 378–395.

6. Filinski, A. Normalization by evaluation for the computational lambda-calculus.
In Typed Lambda Calculi and Applications: 5th International Conference (2001),
vol. 2044 of LNCS, pp. 151–165.

7. Ganz, S., Sabry, A., and Taha, W. Macros as multi-stage computations: Type-
safe, generative, binding macros in MacroML. In International Conference on
Functional Programming (2001), ACM.

8. Griffin, T. G. Notational definitions — a formal account. In Proceedings of the
Third Symposium on Logic in Computer Science (1988).

9. Michaylov, S., and Pfenning, F. Natural semantics and some of its meta-theory
in Elf. In Extensions of Logic Programming (1992), L. Hallnäs, Ed., LNCS.

10. Moggi, E. Functor categories and two-level languages. In Foundations of Software
Science and Computation Structures (1998), vol. 1378 of LNCS.

11. Moggi, E. A monadic multi-stage metalanguage. In Foundations of Software
Science and Computation Structures (2003), vol. 2620 of LNCS.

12. Moggi, E., Taha, W., Benaissa, Z. E.-A., and Sheard, T. An idealized
MetaML: Simpler, and more expressive. In European Symposium on Programming
(1999), vol. 1576 of LNCS, pp. 193–207.

13. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland,
OR 97291-1000,USA. Available online from ftp://cse.ogi.edu/pub/tech-
reports/README.html.

14. Sheard, T., and Peyton-Jones, S. Template meta-programming for Haskell.
In Proc. of the Workshop on Haskell (2002), ACM, pp. 1–16.

15. Steele, Jr., G. L., and Gabriel, R. P. The evolution of LISP. In Proceedings
of the Conference on History of Programming Languages (1993), R. L. Wexelblat,
Ed., vol. 28(3) of ACM Sigplan Notices, ACM Press, pp. 231–270.

16. Taha, W. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999. Available from [13].

17. Taha, W. A sound reduction semantics for untyped CBN multi-stage computation.
Or, the theory of MetaML is non-trivial. In Proceedings of the Workshop on Partial
Evaluation and Semantics-Based Program Maniplation (2000), ACM Press.

18. Taha, W., Benaissa, Z.-E.-A., and Sheard, T. Multi-stage programming: Ax-
iomatization and type-safety. In 25th International Colloquium on Automata, Lan-
guages, and Programming (1998), vol. 1443 of LNCS, pp. 918–929.

19. Taha, W., and Nielsen, M. F. Environment classifiers. In The Symposium on
Principles of Programming Languages (POPL ’03) (New Orleans, 2003).



Type Contexts

[[∅]] = [ ]
[[Σ, f : (t1, t2, [t3]t4) ⇒ t5]] = [[Σ]], f : (t1 ∗ (〈t2〉 ∗ (〈t3〉 → 〈t4〉)) → 〈t5〉)0

[[∆, x2 : [x1 : t1]t2]] = [[∆]], x2 : (〈t1〉 → 〈t2〉)0
[[Π, x : t]] = [[Π]], x : 〈t〉0
[[Π, x : t]] = [[Π]], x : 〈t〉0

Lambda Terms

x : tm ∈ Γ

[[Σ; ∆; Π; Γ `m x : t]] = x

[[Σ; ∆; Π; Γ, x : tm
1 `m e : t2]] = e′

[[Σ; ∆; Π; Γ `m λx.e : t1 → t2]] = λx.e′

[[Σ; ∆; Π; Γ `m e1 : t2 → t]] = e′1 [[Σ; ∆; Π; Γ `m e2 : t2]] = e′2

[[Σ; ∆; Π; Γ `m e1e2 : t]] = e′1e
′
2

[[Σ; ∆; Π; Γ, f : (t1 → t2 → t3 → t)m, x1 : tm
1 , x2 : tm

2 , x3 : tm
3 `m e1 : t]] = e′1

[[Σ; ∆; Π; Γ, f : (t1 → t2 → t3 → t)m `m e2 : t4]] = e′2

[[Σ; ∆; Π; Γ `m letrec f x1 x2 x3 = e1 in e2 : t4]] = letrec f x1 = λx2.λx3.e
′
1 in e′2

Macros

x : t ∈ Π or x : tm ∈ Π

[[Σ; ∆; Π; Γ `1 x : t]] = ˜x

x2 : [x1 : t1]t2 ∈ ∆ and x1 : t11 ∈ Γ

[[Σ; ∆; Π; Γ `1 x2 : t2]] = (̃x2 〈x1〉)

[[Σ, f : (t1, t2, [t3]t4) ⇒ t5; ∆, x2 : [x : t3]t4; Π, x1 : t2; Γ, x0 : t01 `1 e1 : t5]] = e′1
[[Σ, f : (t1, t2, [t3]t4) ⇒ t5; ∆; Π; Γ `1 e2 : t]] = e′2

[[Σ; ∆; Π; Γ `1 letmac f (̃ x0, x1, λx.x2) = e1 in e2 : t]]

= (̃letrec f y =


let x0 = π1 y in
let x1 = π1(π2 y) in
let x2 = λx.(π2(π2 y))x
in 〈e′1〉

 in 〈e′2〉)

f : (t1, t2, [t3]t4) ⇒ t5 ∈ Σ
[[Σ; ∆; Π; Γ `0 e1 : t1]] = e′1
[[Σ; ∆; Π; Γ `1 e2 : t2]] = e′2
[[Σ; ∆; Π, x : t3; Γ `1 e3 : t4]] = e′3

[[Σ; ∆; Π; Γ `1 f(e1, e2, λx.e3) : t5]] = (̃f (e′1, (〈e′2〉, λx.〈e′3〉)))

Code Objects

[[Σ; ∆; Π; Γ `1 e : t]] = e′

[[Σ; ∆; Π; Γ `0 〈e〉 : 〈t〉]] = 〈e′〉
[[Σ; ∆; Π; Γ `0 e : 〈t〉]] = e′

[[Σ; ∆; Π; Γ `1 ẽ : t]] = ẽ′

Fig. 7. Modified Interpretation of MacroML in λU




